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Abstract

In this paper, we establish the block matrix decomposition of kth order slant Toeplitz operators.
We also establish some relations between the compressions of kth order slant Toeplitz and kth

order slant Hankel operators on H2. In the last section, we introduce the notion of kth order
slant Toeplitz graphs.
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1 Introduction

In this paper, we will denote by T the unit circle, L2(T) the Hilbert space of square-integrable
functions on the unit circle T, L∞(T) the space of all essentially measurable functions on T,H2(T)
the subspace of L2(T) of analytic functions on T andH∞(T) the space of all the functions that are
analytic and bounded on T.

Otto Toeplitz introduced and studied the Toeplitz operators in the year 1911 [13]. The rela-
tionships between the matrices and symbols of Laurent and Toeplitz matrices were established by
Brown and Halmos [4]. Many properties of Toeplitz operators have been further established. The
study of slant Toeplitz operators is due to the efforts of Ho in 1996 [9]. Some basic properties such
as norm, spectrum, compactness, eigenvalues and eigenvectors, etc., of this type of operators were
also extensively studied [9].

The notion of slant Hankel operator was introduced by Arora et al. in 2006 [2]. Several basic
properties such as norm, compactness along with various spectral properties were also discussed
[1]. The characterization of a kth order slant Hankel operator and its several algebraic properties
were analysed by Arora and Bhola [3]. Further, the relations between Hankel and Toeplitz oper-
ators via block matric decomposition of multiplication operators were established by Chu [5] to
study the compactness of their product.

In this paper, we try to extend the idea of this block matrix decomposition on generalized slant
Toeplitz operators on L2 to establish various relations between the compressions of generalized
slant Hankel and generalized slant Toeplitz operators on H2.

2 kth Order Slant Toeplitz Operators

Let B = {zi | i ∈ Z} be the standard basis for L2(T). If φ ∈ L∞(T) is a function, then φ(z) is of
the form given by

φ(z) =

∞∑
i=−∞

aiz
i,

where ai = ⟨φ, zi⟩ is the ith Fourier coefficient of φ.

Definition 2.1. The Toeplitz operator Tφ : H2 −→ H2 is defined by Tφ(f) = P (φf), for all f ∈ H2.

Definition 2.2 (kth order slant Toeplitz operator). For any integer k ≥ 2, the kth order slant Toeplitz
operator Ukφ on L2(T) is the operator given by,

Ukφ(z
l) =

∞∑
i=−∞

aki−lz
i.
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With respect to the standard basis B, the matrix representation of Ukφ is the given by,

[
Ukφ
]
B =



. . .
...

...
...

...
...

...
. . . a0 a−1 a−2 . . . a−k . . .
. . . ak ak−1 ak−2 . . . a0 . . .
. . . a2k a2k−1 a2k−2 . . . ak . . .
. . . a3k a3k−1 a3k−2 . . . a2k . . .

. ..
...

...
...

...
...

. . .


.

Definition 2.3. Now, the compression V kφ of Ukφ to the space H2(T) is defined by,

V kφ = PUkφ
∣∣
H2 ,

where P is the orthogonal projection of L2 onto H2.

Then, the matrix of V kφ is given by,

[
V kφ
]
=

â
a0 a−1 a−2 . . . a−k . . .
ak ak−1 ak−2 . . . a0 . . .
a2k a2k−1 a2k−2 . . . ak . . .
a3k a3k−1 a3k−2 . . . a2k . . .
...

...
...

...
...

. . .

ì
.

Definition 2.4. LetWk be the operator on L2(T) defined by,

Wk(z
i) =

®
z

i
k if k | i,

0 otherwise.

Definition 2.5. The adjoint ofWk is given by,

W ∗
k z

n = znk, for all n ∈ Z.

For all nonnegative integers n and for r = 1, 2, 3, . . . , k − 1, we have

PWkz
kn = Pzn = zn =Wkz

kn =WkPz
kn,

and

PWkz
kn+r = P0 = 0 =Wkz

kn+r =WkPz
kn+r.

Also,

PW ∗
k z

n = Pzkn = zkn =W ∗
k z

n =W ∗
kPz

n.

It is obvious that Ukφ =WkMφ, whereMφ is the multiplication operator on L2 induced by φ. Now,

V kφ = PUkφ
∣∣
H2 = PWkMφ

∣∣
H2 =WkPMφ

∣∣
H2 =WkTφ,

where Tφ = PMφ

∣∣
H2 is a Toeplitz operator on H2(T).

Definition 2.6. The Hankel operator Hφ : H2 −→ H2 is defined by,

Hφ(f) = PJ(φf), for all f ∈ H2,

where J denotes the flip operator on L2 given by J(f(z)) = f(z̄) for all f ∈ L2.
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Definition 2.7 (kth order slant Hankel operator). For any integer k ≥ 2, the kth order slant Hankel
operator Dk

φ on L2(T) is the operator given by,

Dk
φ(z

l) =

∞∑
i=−∞

a−ki−lz
i.

With respect to the standard basis B, the matrix representation of the kth order slant Hankel op-
erator Dk

φ is given by,

[
Dk
φ

]
B =



. . .
...

...
...

...
... . ..

. . . a0 a−1 a−2 . . . a−k . . .

. . . a−k a−k−1 a−k−2 . . . a−2k . . .

. . . a−2k a−2k−1 a−2k−2 . . . a−3k . . .

. . . a−3k a−3k−1 a−3k−2 . . . a−4k . . .

. ..
...

...
...

...
...

. . .


.

Definition 2.8. Now, the compression Ekφ of Dk
φ to the space H2(T) is given by,

Ekφ = PDk
φ

∣∣
H2 ,

where P is the orthogonal projection of L2 onto H2.

Then, the matrix of Ekφ is given by,

[
Ekφ
]
=

â
a0 a−1 a−2 . . . a−k . . .
a−k a−k−1 a−k−2 . . . a−2k . . .
a−2k a−2k−1 a−2k−2 . . . a−3k . . .
a−3k a−3k−1 a−3k−2 . . . a−4k . . .
...

...
...

...
...

. . .

ì
.

Obviously, Dk
φ = JWkMφ.

Thus,

Ekφ = PDk
φ

∣∣
H2 = PJWkMφ

∣∣
H2 =WkPJMφ|H2 =WkHφ,

where Hφ = PJMφ

∣∣
H2 is a Hankel operator on H2(T).

Lemma 2.1. The adjoint ofWk is multiplicative on L2(T), i.e., for any φ,ψ ∈ L2(T),
we haveW ∗

k (φψ) = (W ∗
kφ)(W

∗
kψ).

Proof. It can be easily seen that,

W ∗
k (φψ) = (φψ)(zk) = φ(zk) · ψ(zk) = (W ∗

kφ)(W
∗
kψ).

Theorem 2.1. If φ,ψ ∈ L2(T), then

Wk(φψ) = (Wkφ)(Wkψ) +

k−1∑
r=1

z(Wkz̄
rφ)(Wkz̄

k−rψ).
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Proof. Let Pr denote the projection from L2 on the closed span of
{zkn+r : n ∈ Z and r = 0, 1, 2, . . . , k − 1}. Then, φ ∈ L2(T) can be written as

φ(z) = φ0(z
k) + φ1(z

k+1) + φ2(z
k+2) + φ3(z

k+3) + · · ·+ φk−1(z
k+k−1),

where φr(zk) = Pr(φ(z)). Now,

φ(z) = φ0(z
k) + zφ1(z

k) + z2φ2(z
k) + z3φ3(z

k) + · · ·+ zk−1φk−1(z
k) =

k−1∑
r=0

zrφr(z
k).

Similarly, ψ ∈ L2(T) can also be written as,

ψ(z) = ψ0(z
k) + zψ1(z

k) + z2ψ2(z
k) + z3ψ3(z

k) + · · ·+ zk−1ψk−1(z
k) =

k−1∑
s=0

zsψs(z
k).

Now,

φ(z)ψ(z) =

(
k−1∑
r=0

zrφr(z
k)

)(
k−1∑
s=0

zsψs(z
k)

)

=

k−1∑
r=0

k−1∑
s=0

zr+sφr(z
k)ψs(z

k)

= φ0(z
k)ψ0(z

k) +

k−1∑
r=1

k−1∑
s=1

zr+sφr(z
k)ψs(z

k).

It can be seen that,

Wk (φ(z)ψ(z)) =Wk

(
φ0(z

k)ψ0(z
k)
)
+Wk

(
k−1∑
r=1

k−1∑
s=1

zr+sφr(z
k)ψs(z

k)

)

=Wk

(
φ0(z

k)ψ0(z
k)
)
+Wk

(
k−1∑
r,s=1

zr+sφr(z
k)ψs(z

k)

)

=Wk

(
φ0(z

k)ψ0(z
k)
)
+Wk

(
k−1∑
r=1

zkφr(z
k)ψk−r(z

k)

)

=Wk (W
∗
k (φ0(z)ψ0(z))) +Wk

(
k−1∑
r=1

W ∗
k (zφr(z)ψk−r(z))

)

= φ0(z)ψ0(z) +

k−1∑
r=1

zφr(z)ψk−r(z)

= (Wkφ(z)) (Wkψ(z)) + z

k−1∑
r=1

Wk (z̄φ(z))Wk

Ä
z̄(k−r)ψ(z)

ä
.

Hence, we have

Wk(φψ) = (Wkφ(z)) (Wkψ(z)) + z

k−1∑
r=1

Wk (z̄φ(z))Wk

Ä
z̄(k−r)ψ(z)

ä
.

This proves the theorem.
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Corollary 2.1. If φ(z) =

∞∑
n=−∞

zkn or ψ(z) =

∞∑
m=−∞

zkm, then Wk is multiplicative on L2(T) i.e.,

Wk(φψ) = (Wkφ)(Wkψ).

Proof. If φ(z) =
∞∑

n=−∞
zkn, thenWk (z̄

rφ) = 0 for r = 1, 2, . . . , k− 1. Thus, by Theorem 2.1, we get

Wk(φψ) = (Wkφ)(Wkψ).

Similarly, the result holds if ψ(z) =
∞∑

m=−∞
zkm.

Corollary 2.2. Ifφ(z) =
∞∑

n=−∞
zkn orψ(z) =

∞∑
m=−∞

zkm, then the product of two kth order slant Toeplitz

operators is a kth order slant Toeplitz operator i.e., Ukφψ = UkφU
k
ψ .

Proof. Since Ukφ =WkMφ, we have Ukφψf =Wk(φψ)f for all f ∈ L2(T).

If φ(z) =
∞∑

n=−∞
zkn or ψ(z) =

∞∑
m=−∞

zkm, then Ukφψ = (Wkφ)(Wkψ).

Thus, Ukφψ = UkφU
k
ψ .

This proves the corollary.

3 Block Matrix Representation of Uk
φ

A decomposition of a Hilbert space H in the formM ⊕M⊥ leads to a block matrix represen-
tation of operators onH [12]. Suppose A is an operator onH . If P is the projection ofH ontoM ,
A1 is the restriction of PA toM , A2 is the restriction of PA toM⊥, A3 is the restriction of (I−P )A
toM and A4 is the restriction of (I − P )A toM⊥, then A can be represented by

A =

Å
A1 A2

A3 A4

ã
.

Since Ukφ is an operator on L2(T), it can be expressed as an operator matrix with respect to the
decomposition L2 = H2 ⊕ (H2)⊥ as follows,

Ukφ =

Ñ
PUkφ

∣∣
H2 PUkφ

∣∣
(H2)⊥

(I − P )Ukφ
∣∣
H2 (I − P )Ukφ

∣∣
(H2)⊥

é
.

If f̃(z) = f(z̄), then the following relations can be easily established;

1. PUkφ
∣∣
H2 = V kφ .
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2. PUkφ
∣∣
(H2)⊥

= Ekφ̃J .

3. (I − P )Ukφ
∣∣
H2 = JEkφ.

4. (I − P )Ukφ
∣∣
(H2)⊥

= JV kφ̃ J .

Thus, the block matrix representation of the kth order slant Toeplitz operator Ukφ : L2 → L2 with
respect to the decomposition L2 = H2 ⊕ (H2)⊥ is given below,

Ukφ =

Ñ
V kφ Ekφ̃J

JEkφ JV kφ̃ J

é
.

Similarly, for ψ ∈ L∞(T), we have

Ukψ =

Ñ
V kψ Ek‹ψJ
JEkψ JV k‹ψ J

é
.

Now,

UkφU
k
ψ =

Ñ
V kφ Ekφ̃J

JEkφ JV kφ̃ J

éÑ
V kψ Ek‹ψJ
JEkψ JV k‹ψ J

é
=

Ö
V kφ V

k
ψ + Ekφ̃E

k
ψ V kφE

k‹ψJ + Ekφ̃V
k‹ψ J

JEkφV
k
ψ + JV kφ̃E

k
ψ JEkφE

k‹ψJ + JV kφ̃ V
k‹ψ J
è

.

Also,

Ukφψ =

Ñ
V kφψ Ek

φ̃ψ
J

JEkφψ JV k
φ̃ψ
J

é
.

If φ(z) =
∞∑

n=−∞
zkn or ψ(z) =

∞∑
m=−∞

zkm, then, by Corollary 2.2, Ukφψ = UkφU
k
ψ .

Comparing the upper and lower left corners of the matrices Ukφψ and UkφUkψ , we get the follow-
ing important relations between the compressions of kth order slant Toeplitz and kth order slant
Hankel operators.

Theorem 3.1. Let φ,ψ ∈ L∞(T). If φ(z) =
∞∑

n=−∞
zkn or ψ(z) =

∞∑
m=−∞

zkm, then;

(1) V kφψ = V kφ V
k
ψ + Ekφ̃E

k
ψ , and

(2) Ekφψ = EkφV
k
ψ + V kφ̃E

k
ψ .
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Corollary 3.1. If ψ ∈ zH∞, then;

(1) the product of two compressions of kth order slant Toeplitz operators on H2 is a compression of a kth
order slant Toeplitz operator on H2 i.e., V kφ V kψ = V kφψ , and

(2) the product of a compression of a kth order slant Hankel operator and a compression of a kth order slant
Toeplitz operator on H2 is a compression of a kth order slant Hankel operator i.e., V kφEkψ = Ekφψ .

Proof. If ψ ∈ zH∞, then,

ψ(z) = z

∞∑
k=0

akz
k =

∞∑
k=0

akz
k+1.

Thus,

Jψ(z) = J

( ∞∑
k=0

akz
k+1

)
= a0z

−1 + a1z
−2 + a2z

−3 + · · · ∈ (H2)⊥.

This implies that Hψ = PJψ = 0, and hence, Ekψ = 0. Thus, from the above Theorem 3.1, we can
obtain the following relations.

V kφψ = V kφ V
k
ψ and Ekφψ = EkφV

k
ψ .

This proves the corollary.

Theorem 3.2. If φ̃ ∈ zH∞, then V kφEkψ = EkψV
k
φ̃ .

Proof. By Theorem 3.1, we have

Ekφψ = EkφV
k
ψ + V kφ̃E

k
ψ.

So,

Ekφ̃ψ = Ekφ̃V
k
ψ + V kφE

k
ψ.

Since Ek‹ψ = 0 for φ̃ ∈ zH∞, we have

Ekφ̃ψ = V kφE
k
ψ. (1)

Similarly, Ekψφ = EkψV
k
φ + V k‹ψEkφ and Ekψφ̃ = EkψV

k
φ̃ + V k‹ψEkφ̃.

Hence,

Ekφ̃ψ = EkψV
k
φ̃ . (2)

Thus, from (1) and (2), we get V kφEkψ = EkψV
k
φ̃ .
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4 kth Order Slant Toeplitz Graphs

In [14], the concept of Toeplitz graphs with symmetric Toeplitz adjacency matrices had been
studied. The corresponding graphs thus obtained were undirected simple graphs. But, what will
be the nature of the graphs if we take non-symmetric adjacency Toeplitz matrices? To solve the
discrepancy, the concept of directed Toeplitz graphs has been introduced in [11], in which the
graphs are directed graphs without loops with Toeplitz adjacency matrices. In this paper, we
extend the idea of these directed graphs with loops to introduce the notion of kth order slant
Toeplitz graphs whose adjacency matrices are kth order slant Toeplitz matrices.

Definition 4.1. A directed kth order slant Toeplitz graph Uk is defined as a digraph with a kth order slant
Toeplitz adjacency matrix.

The main diagonal of a kth order slant Toeplitz adjacency matrix of order (n × n), will be
labelled 0 and it contains only zeros. The n − 1 distinct diagonals above the main diagonal will
be labelled 1, 2, . . . , n− 1, and those under the main diagonal will also be labelled 1, 2, . . . , n− 1.
Let a1, a2, . . . , as be the upper diagonals containing ones and b1, b2, . . . , bt be the lower diagonals
containing ones, such that 0 < a1 < a2 < · · · < as < n and 0 < b1 < b2 < · · · < bt < n. Then the
corresponding kth order slant Toeplitz graph will be denoted by Ukn⟨a1, a2, . . . , as; b1, b2, . . . , bt⟩.
Hence the graph Ukn⟨a1, a2, . . . , as; b1, b2, . . . , bt⟩ with vertex set {1, 2, . . . , n} is a digraph whose
adjacency matrix is a kth order slant Toeplitz matrix in which the arc (i, j) occurs if and only if

j = k(i− 1) + 1 + ar or i =
j − 1

k
+ 1 + bl for some 1 ≤ r ≤ s and 1 ≤ l ≤ t.

Example 4.1. Let φ(z) = z−5 + 4z−4 + 3z2 + 5z4.

Then, by Definition 2.3, the matrix representation of V 2
φ with respect to the orthonormal basis

B is given by,

[
V 2
φ

]
B =



0 0 0 4 1 0 0 0 . . .
3 0 0 0 0 4 1 0 . . .
0 0 3 0 0 0 0 4 . . .
5 0 0 0 3 0 0 0 . . .
0 0 5 0 0 0 3 0 . . .
0 0 0 0 5 0 0 0 . . .
0 0 0 0 0 0 5 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .


.

The indicator binarymatrix (which replaces each non-zero entry by 1) of the abovematrix is given
by,

[
V 2
φ

]
B =



0 0 0 1 1 0 0 0 . . .
1 0 0 0 0 1 1 0 . . .
0 0 1 0 0 0 0 1 . . .
1 0 0 0 1 0 0 0 . . .
0 0 1 0 0 0 1 0 . . .
0 0 0 0 1 0 0 0 . . .
0 0 0 0 0 0 1 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .


.
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The corresponding kth order slant Toeplitz graph of the abovematrixwill beU2
∞⟨3, 4; 1, 3⟩ as given

in Figure 1.

1 2 3 4 n 2n− 7 2n− 3 2n+ 2 2n+ 3

· · · · · · · · · · · · · · ·

Figure 1: U2
∞⟨3, 4; 1, 3⟩.

It may be noted that the out-degree of a vertex v is the number of arcs incident from v, and
is denoted by outdeg(v) [15]. Similarly, the in-degree of a vertex v is the number of arcs incident
to v, and is denoted by indeg(v). And if the digraph has loops, then each loop contributes 1 to
both the out-degree and the in-degree of the corresponding vertex. Thus, for the given digraph
U2
∞⟨3, 4; 1, 3⟩ as shown in Figure 1, outdeg(1) = 2, outdeg(2) = 3, outdeg(3) = 3, outdeg(4) = 4,

and indeg(1) = 2, indeg(2) = 0, indeg(3) = 1, indeg(4) = 1.

For an arbitrary vertex n, we can determine its out-degree by taking i = n in the formulae

j = k(i− 1)+ 1+ ar or i =
j − 1

k
+1+ bl. In the above graph U2

∞⟨3, 4; 1, 3⟩, we have k = 2, a1 = 3,
a2 = 4, b1 = 1 and b2 = 3 and thus we get the vertices incident from n given by j = 2n− 7, 2n− 3,
2n+ 2, 2n+ 3. Clearly, for n ≥ 4, the out-degree of the vertex n is 4.

Similarly, the vertices incident to n are given by i = n− 3

2
,
n− 2

2
,
n+ 3

2
,
n+ 7

2
. Thus, we can

easily observe that for n ≥ 4,

indeg(n) =

®
1, if n is even,
3, if n is odd.

For the digraph U2
∞⟨3, 4; 1, 3⟩, the out-degree and the in-degree sequences are (2, 3, 3, 4, 4, 4, . . .)

and (0, 1, 1, . . . , 1, 1, 2, 3, 3, . . .) respectively.

Example 4.2. We can also find some digraphs which contain no loops. Consider a 9× 9 upper triangular
kth order slant Toeplitz matrix with k = 2 as given below:

0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


.

764



K. P. Singh et al. Malaysian J. Math. Sci. 17(4): 755–768(2023) 755 - 768

1 2 3 4 5 6 7 8 9

Figure 2: U2
9 ⟨1, 5; 0⟩.

The corresponding kth order slant Toeplitz graph of the abovematrixwill beU2
9 ⟨1, 5; 0⟩ as given

in Figure 2.

It can be clearly seen that outdeg(1) = 2, outdeg(2) = 2, outdeg(3) = 2, outdeg(4) = 1,
outdeg(5) = 0, outdeg(6) = 0, outdeg(7) = 0, outdeg(8) = 0, outdeg(9) = 0, and indeg(1) = 0,
indeg(2) = 1, indeg(3) = 0, indeg(4) = 0, indeg(5) = 1, indeg(6) = 1, indeg(7) = 1, indeg(8) = 1,
indeg(9) = 1. Thus, for the digraph U2

9 ⟨1, 5; 0⟩, the out-degree and in-degree sequences are
(0, 0, 0, 0, 0, 1, 2, 2, 2) and (0, 0, 0, 1, 1, 1, 1, 1, 1) respectively.

Example 4.3. By using the same function as in Example 4.1 and taking k = 3, the indicator binary matrix
of V 3

φ with respect to the orthonormal basis B is given by,

0 0 0 1 1 0 0 0 . . .
1 0 0 0 0 0 1 1 . . .
0 0 0 1 0 0 0 0 . . .
1 0 0 0 0 0 1 0 . . .
0 0 0 1 0 0 0 0 . . .
0 0 0 0 0 0 1 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .


.

The corresponding kth order slant Toeplitz graph of the above matrix will be U3
∞⟨3, 4; 1, 3⟩ as shown in

Figure 3.

1 2 3 4 n 3n− 11 3n− 5 3n+ 1 3n+ 2

· · · · · · · · · · · · · · ·

Figure 3: U3
∞⟨3, 4; 1, 3⟩.

It may be noted that outdeg(1) = 2, outdeg(2) = 3, outdeg(3) = 3, outdeg(4) = 4, and
indeg(1) = 2, indeg(2) = 0, indeg(3) = 0, indeg(4) = 3. Now, considering k = 3, a1 = 3,
a2 = 4, b1 = 1 and b2 = 3 and we get the vertices incident from an arbitrary vertex n given
by j = 3n− 11, 3n− 5, 3n+ 1, 3n+ 2. Clearly, for n ≥ 4, the out-degree of the vertex n is 4.
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Similarly, the vertices incident to n are given by i = n− 1

3
,
n− 2

3
,
n+ 5

3
,
n+ 11

3
. Thus, it can

be seen that for n ≥ 4,

indeg(n) =


0, if n ≡ 0 (mod 3),

3, if n ≡ 1 (mod 3),

1, if n ≡ 2 (mod 3).

Thus, the out-degree and the in-degree sequences for the digraphU3
∞⟨3, 4; 1, 3⟩ are (2, 3, 3, 4, 4, 4, . . .)

and (0, . . . , 0, 1, 1, . . . , 1, 1, 2, 3, 3, . . .) respectively.
Example 4.4. Taking k = 4 and using the function used in Example 4.1, the indicator binary matrix of
V 4
φ with respect to the orthonormal basis B is given by,

0 0 0 1 1 0 0 0 . . .
1 0 0 0 0 0 0 1 . . .
0 0 0 0 1 0 0 0 . . .
1 0 0 0 0 0 0 0 . . .
0 0 0 0 1 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
0 0 0 0 0 0 0 0 . . .
...

...
...

...
...

...
...

...
. . .


.

The corresponding kth order slant Toeplitz graph of the above matrix will be U4
∞⟨3, 4; 1, 3⟩ as shown in

Figure 4.

1 2 3 4 n 4n− 15 4n− 7 4n 4n+ 1

· · · · · · · · · · · · · · ·

Figure 4: U4
∞⟨3, 4; 1, 3⟩.

It may be noted that outdeg(1) = 2, outdeg(2) = 3, outdeg(3) = 3, outdeg(4) = 4, and
indeg(1) = 2, indeg(2) = 0, indeg(3) = 0, indeg(4) = 1. Now, considering k = 3, a1 = 3,
a2 = 4, b1 = 1 and b2 = 3 and we get the vertices incident from an arbitrary vertex n given
by j = 4n− 15, 4n− 7, 4n, 4n+ 1. Clearly, for n ≥ 4, the out-degree of the vertex n is 4.

Similarly, the vertices incident to n are given by i = n− 1

4
,
n

4
,
n+ 7

4
,
n+ 15

4
. Thus, for n ≥ 4,

indeg(n) =


1, if n ≡ 0 (mod 4),

3, if n ≡ 1 (mod 4),

0, if n ≡ 2, 3 (mod 4).

Consequently, the out-degree and the in-degree sequences for the digraph U3
∞⟨3, 4; 1, 3⟩ are

(2, 3, 3, 4, 4, 4, . . .) and (0, . . . , 0, 1, 1, . . . , 1, 1, 2, 3, 3, . . .) respectively.

Readers are left to discuss these properties for higher values of k, and find out if there are any
similarities or patterns in them.
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5 Conclusion and Scope

We have established the block matrix decomposition of kth order slant Toeplitz operators. We
have also discussed some relationships between the compressions of kth order slant Hankel and
kth order slant Toeplitz operators. Further, we studied the graphs of kth order slant Toeplitz op-
erators on H2 and drew some related graphs.

We can further study the above relations by using the compressions of these generalized slant
Hankel and generalized slant Toeplitz operators to model spaces [10]. We can also discuss several
properties like norm, spectrum, compactness etc., of the products of such truncated operators
[6]. Hamiltonian properties of Toeplitz and directed Toeplitz graphs have been studied in [14]
and [11]. We can further examine and analyze these properties for generalized slant Toeplitz
operators.

Various structural and spectral properties along with hyponormality and isometric behaviour
of slant Toeplitz operators on the Lebesgue space of the n-torus have been thoroughly discussed in
[8]. By introducing the notion of slantification of aHankel operator on theHardy space of n-torus,
hyponormality, isometric behaviour, co-isometric behaviour and compactness of these operators
have also been studied [7]. Thus, we can also analyze various relations between the compressions
of kth order slant Hankel and kth order slant Toeplitz operators on such spaces.
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